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MODIFIED TRANSFER EQUATION APPROACH AND ITS APPLICATION TO 
LINEARIZED PLANE COUETTE FLOW 

b y  

S. L .  S a t i n *  

I. Introduction: 

Many practical problems in the theory of rarefied gases become sus- 
ceptible to mathematical treatment through the transfer equation approach. 
In this approach an approximate form of the velocity distribution function 
containing a number of coefficients with spatial and temporal variations is 
assumed whereas the coefficients are determined by satisfying judiciously 
selected transfer equations. These equations are formed by multiplying the 
collision equations by certain factors, e.g. the mass of a molecule, the 
momentum of a molecule, etc. and then to integrate the equation over all 
values of the velocity components of the molecule. Major contributions for 
the advancement of the transfer equation approach have been made by Mort- 
Smith (1951) (1) , Lees (1959)(3)0 Takao (196!)(5)~ Shen (1963)(6) and Beck 
(1965) (~) . For completeness and convenience we discuss here only the main 
points of each of the methods proposed by these authors before dealing with 
the present method, viz. "Modified Transfer Equation Approach". 

Mott-Smith (1951) (1) approximates the distribution function by a sum of 
two Maxwellian distribution functions corresponding to the conditions upstream 
and downstream of the shock. The velocity and temperature functions in 
these Maxwellians are taken as constants and are therefore related by the 
usual Rankine-Hugoniot conditions, but the number densities of these Max- 
wellians are initially undetermined. The number density distribution through 
the shock region is found by solving the pertinent transport equations. 
This method is quite suitable for a rough description of the structure of 
a strong, steady normal shock wave. In this connection we also mention 
a slightly different approach initiated by Glansdorff (1961) (2) which consists 
in considering the gas a mixture of an upstream and a downstream gas 
both in self-equilibrium, but experiencing inelastic collision from each 
other. It is believed to retain the virtues of Mort-Smith approach in case 
of a strong shock and it improves it in case of weak shock if the Navier- 
Stokes structure is taken as reference. It is in fact an extension to the 
gas dynamics of the two fluid model initially introduced in the superfluidity 
theory. In a two fluid model each component keeps its own temperature 
and its own mean velocity, contrary to the usual diffusion theory. Lees 
(1959) (3) introduces the two stream Maxwellian which is a natural extension 
and generalization of Mort-Smith's function (1951) (1) for a normal shock, 
but differs from it in certain essential respects. One important difference 
between Lees' form~lation and Mott-Smith's is that the distribution functions 
employed by Lees are discontinuous in particle velocity, whereas Mort- 
Smith's function is continuous. It should be remarked, however, that Lees' 
approach seems to have been inspired by Mort-Smith's treatment of the 
normal shock wave. Lees applies his technique to linearized plane couette 
flow and Rayleigh's problem and to that end he utilizes two stream Max- 
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wellian in equations of transfer. Further, Liu and Lees (1961) (4) extend 
the technique of Lees (1959) (3) to cover the problem of plane compressible 
couette flow. 

By using the line of sight principle postulated by Lees (1959) (3) , which 
in fact divides the molecules into groups as if they were in free-molecule 
flow, a more general formulation for the velocity distribution functions 
(viz. the bimodal two stream Maxwellian distribution) is proposed by Beck 
(1965)(7). The assumption of Lees for the velocity distribution function is 
contained as a special case in the formulation of Beck. 

Shen (1963) (6) proposes a relaxation type procedure for the transition 
regime of Rarefied-gas Flows and applies it to the problem of couette flow. 
He claims "though more cumbersome than earlier, simpler approaches, 
the present theory is fundamentally more defensible and seems to yield 
better details in Kundsen layer". He makes use of Lees' two stream Max- 
wellian in his assumed form of distribution function. This point is dealt 
with in the section 2. The present author believes that instead of using 
Lees' two-stream Maxwellian distribution it is more logical to use poly- 
nomials in the velocity space. In Shen's approach one can only choose 
"appropriate" transfer equations so as to calculate the unknowns introduced 
in the distribution function, but in the present analysis one can choose as 
many transfer equations as one requires. Moreover, the series expansion 
of distribution function has more variables which are functions of position 
and can be evaluated by the appropriate (unrestricted) number of transfer 
equations whereas in Shen's procedure there are only two unknowns. There- 
fore the present method is more general than that of Shen's and can take 
full advantage of the additional transfer equations. 

In short it is the purpose of the present paper to propose a more general 
expression for the distribution function than that of Shen's and the appli- 
cation of which is made to the problem of plane linearized couette flow. 
The unknowns introduced in the distribution function are determined by 
means of transfer equations. We will designate the present approach as 
"Modified Transfer Equation Approach". 

In the following section the main features of the present method are 
exposed. 

2. Basic Theory of the Present  Method. 

In studying the problems of rarefied gas dynamics, one must generally 
have recourse to the Boltzmann equation. For the general case one has a 
non-linear, integro-differential equations the integral involving a fivefold 
integration. In the linear problem one ean simplify this integral by line- 
arization and reduce the order of integration from five to three; however, 
even for this simplified case, the integro-differential equation presents a 
formidable mathematical diffic~lty. To treat this problem various inves- 
tigators Bhatnagar et al (1954) t j and Welander (1954) (~) , have postulated 
models which replace the complicated collision integrals and which is 

where 

(@ v) v(nf n (~ f (~ -~+v. nf = - (1) 

f = f(t, x, v), velocity distribution function, 

v = (v x, Vy, Vz), molecular velocity, 

E n(O) f(o) = n(x, t) exp v - q(x, t) , 
2~kT(x, t) 2kT(x_, t) 

local Maxwellian 
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ff 
n(x, t) = j fdv, number density 

= n "I ~ vfdv, macroscopic velocity q(_x, t) 

T(x ,  t) - J v - q(x,  t) dv,  t e m p e r a t u r e  
3n(x ,  

a n d  v i s  the  c o l l i s i o n  f r e q u e n c y .  

T h e  B G K  m o d e l  i s  b a s e d  on the a s s u m p t i o n  t ha t  the m o l e c u l e s  s c a t t e r e d  
i n t o  the b e a m  of m o l e c u l e s  c o m e  f r o m  c o l l i s i o n  b e t w e e n  m o l e c u l e s  i n t o  
M a x w e l l i a n  m o t i o n .  T h i s  m o d e l  e q u a t i o n  e x h i b i t s  a l l  the e l e m e n t a r y  q u a l -  
i t a t i v e  f e a t u r e s  of the B o l t z m a n n  E q u a t i o n .  
U n d e r  s t e a d y  s t a t e  c o n d i t i o n s  

0 
Ot 

Thus after taking cognizance of the fact that n (~ f(o) must be constant in 
this case and ergo upon integration, eq.(1) results as: 

nf = n'f' exp [- u(s-s')/v]+ n(~ (~ [ 1 - exp [-~(s-s')/v}] (2) 

where s, v, n'f' represent the distance measured along the direction of 
v, the magnitude of the velocity v and the distribution prescribed at the 
place of origin (s=s') of the molecule having velocity _v respectively. It 
should be remarked that the assumed distribution function forms the starting 
point of the transfer equation approach. Among the investigators employing 
the transfer equation approach, only Shen indicates how an approximate 
distribution function may be constructed taking into account the proper 
collision effects. For this, Shen examines the Krook equation (I) for sim- 
plicity and proposes the approximate distribution function (3) on the basis 
of equation (2), viz. 

nf= n'f' exp[- k(s-s',/v] +n'X'El- exp {-k(s-s,)/v}], (31 
where the distribution function n'f* is not the same as the local Maxwellian 
n(O) f(o). Shen takes n'f* as Lees type of distribution function with limited 
number of unknowns and his approach does not exploit the full use of transfer 
equations. Therefore it becomes expedient to introduce the series type 
expansion for n'f* with as many unknowns as possible which can be evaluated 
with the aid of transfer equations. In a sense the present method, inspire 
of the same amount of work involved, is more general than that of Shen. 
The above procedure is applied to linearized couette flow and the analysis 
is outlined in the following section. 

3. Mod@ed Transfer Equation Method for Linearized Plane Couette Flow 

The present approach is applied to the problem of steady flow of gas 
between two parallel plates. The upper plate moves with velocity + u/2 
in its own plane at y = d/2, while the lower plate at y = - d/2 moves 
parallel to the upper plate with velocity - u/2. Both the temperature and 
the density p(hence the number der~sity n) are constants for the linearized 
case. Further it is necessary to select a model for the interaction of the 
molecules with these plates, and for simplicity it is assumed that the mol- 
ecules reflect with Maxwell equilibrium distribution specified by the plate 
temperature, i.e. diffuse reflection with complete thermal accommodation. 
Hence on leaving the plates y = • d/2~ the molecules have the Maxwellian 
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d i s t r i b u t i o n :  

n f  = n A  e x p  - h {x 7 + { y  z 2 

w i t h  
-3/2 

- - ( ~ )  

1 
a n d  h = 

2 R T  

(4) 

(5) 

The upper sign in (4) holds for plate "i" while the lower sign for plate 
"2". 

Q 

| 

X 

Fig. 1. The Linearized Couette Flow. 

The only independent variable in this problem is the coordinate normal 
to the plate; thus (3) transforms to: 

nf = n'f' exp 
- k ( y - y ' )  

~y 

[ - k ( y - y ' )  
+ n#f# l-exp 

~y t $ 
(6) 

where ~ . is the component of molecular velocity in the y-direction and y' 
indicate~ the place of the origin of the molecules. As the choice of n':~f ~:-" 
is arbitrary and further if the distribution function is chosen so as to sat- 
isfy number of transport equations, one can reach at reasonably accurate 
approximation of the distribution function rather than having very limited 
number of transfer equations - a result of assumed form of distribution 
function having limited number of unknowns. In the present method we as- 
sume the distribution function for n-'~-'f# a series expansion in velocity space 
as follows: 

~y > O, 

n f  -- n A e x p  - h ( ( x  + + + ~ - ~ + 
Y ~y 

+ n A  1 - e x p ~  e x p  - h ~  2 ce l (y ){x+Ce~y)~  + 4 ( y ) { x g z +  . . . .  

(7) 
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~y < 0 

nf = nAexp  - ~x - 

] 
_ k ~Y /! exp 

+ 
+ ~y z \  ~y 

{-h~,  2} [c~;(y)~x + ot~y)~y + . . . .  . (7) 

g 
w h e r e  e i ( y )  a r e  f u n c t i o n s  to be d e t e r m i n e d  by the a p p r o p r i a t e  t r a n s f e r  
e q u a t i o n s .  The  b o u n d a r y  c o n d i t i o n s  a r e  a u t o m a t i c a l l y  s a t i s f i e d  by (7). 
M o r e o v e r ,  in the p r e c e d i n g  a n a l y s i s  w_e have  a s s u m e d  d=2 f o r  the s a k e  

+(y) we m a k e  u s e  of the t r a n s f e r  of s i m p l i c i t y .  In o r d e r  to c a l c u l a t e  e i 
e q u a t i o n s  and  f i r s t  c o n s i d e r  the e q u a t i o n s  f o r  m~ x and m~ x ~ v .  It  i s  w o r t h  
r e m a r k i n g  tha t  whi le  c o n s i d e r i n g  the t r a n s f e r  e q u a t i o n s  fo r  t h e  above  s a i d  
v a r i a b l e s  a l l  the t e r m s  e x c e p t  wi th  c o e f f i c i e n t s  o~ (y )  v a n i s h  as  a r e s u l t  of 
the f o r m  of the d i s t r i b u t i o n  f u n c t i o n s  (7). M o r e o v e r ,  i f  we c h o o s e  o t h e r  
t r a n s f e r  e q u a t i o n s  e . g .  fo r  m~y and m ~ 2 y ,  s a m e  s o r t  of s i m p l i f i c a t i o n  is  
bound to r e s u l t .  It  is  e v i d e n t  tha t  on a c c o u n t  of the b r o a d  c h o i c e  of t r a n s f e r  
e q u a t i o n s ,  one m a y  be ab le  to s p a n  the w i d e r  s p e c t r u m  of n o n - l i n e a r  p r o -  
b l e m s .  Wi thou t  a n y  l o s s  of g e n e r a l i t y ,  we will  c a l c u l a t e  only  fou r  of the 
v a r i a b l e s  i n t r o d u c e d  in the d i s t r i b u t i o n  f u n c t i o n s  and m a k e  u s e  of fou r  
m o m e n t  e q u a t i o n s  in o r d e r  to c a l c u l a t e  t h e m .  

~,~/,) The  t r a n s f e r  e q u a t i o n s  fo r  m~x and m ~ x ~ y  y i e l d  a. C a l c u l a t i o n  o f  1 , y .  
the f o l l o w i n g  two e q u a t i o n s  f o r  oe~(y),viz.:  

4V.~h3/2 (1-GI,~)  4V_~h3/2 ( l -G1 , - )  = ~  Pxy + (GI,++GI,-) ,  (8) 
4 V~h 

* - RT u 
el (I-G2.+) + el (I-G2.-) Pxy (Y+CI) + (C2 +-G2.-), 
8h 2 8h 2 U 8h ' 

w h e r e  Gn,+_: G n [ kY'-~ ( l+y)]  , 

(9) 

c o  

exp(_x2  e / x ) x n d x  
O 

Gn(e)  - , n = 0 , 1 , 2  . . . . .  

~ :  e x p ( - x 2 ) x n d x  

and the c a l c u l a t i o n  of Gn(e)  is  d i s c u s s e d  by A b r a m o v i t z  (1953) (l~ It  i s  
i n t e r e s t i n g  to no te ,  h o w e v e r ,  tha t  the e q u a t i o n s  f o r  e l ( y )  t u rn  out to be 
of the s i m i l a r  n a t u r e  a s  that  f o r  U in c a s e  of Shen.  B e f o r e  d e t e r m i n i n g  
e~(y) we m u s t  f i r s t l y  d e t e r m i n e  the c o n s t a n t s  Pxy and C1 which  o c c u r  in 
the e q u a t i o n s  (8) and  (9). The  c o n s t a n t s  a r e  e v a I u a t e d  with  the a id  of the 
c o n d i t i o n s  a t  y=+l  and c a r r y i n g  out  the s i m i l a r  c a l c u l a t i o n  a s  Shen we a r r i v e  
a t  the fo l l owing  v a l u e s  fo r  Pxy and  C, ie .  

C 1 = 0, 

u 1 + 

Pxy 2 ~h--~ ~ /~ ~ 1 - g  2 

(lo) 

T h i s  c o m p l e t e s  the c a l c u l a t i o n  of the f i r s t  c o n s t a n t  c! l (y ). gn 'S  in (11) a r e  
g i v e n  as  
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gn = Gn (2dk V--h) (n = 0, i,2) 

It is worth remarking that when , . o~(y), ol~(y) ....... etc are taken to 
be zero in (7), we arrive at the results analogous to those of Shen. In oth- 
er words the results pertaining to the first term in the series expansion 
for the velocity distribution function in (7) are similar to those of Shen. 
As it is impossible to use other transfer equations in Shen's method- 
consequence of his assumed form of velocity distribution function, the main 
purpose of the present method is to propose a general form of distribution 
function so that one can take advantage of the other transfer equations. In 
the following section we calculate the coefficients of the second term i. e. 

" 2 o~(y) with the aid of the transfer equations for m~y and m~ y. 

b. Transfer equations for rn~y and m~y; Calculation of a~(y). 

The  t r a n s p o r t  e q u a t i o n  fo r  any qb d e p e n d i n g  on the m o l e c u l a r  v e l o c i t y  
is written as 

(8f~ d~ 
V r ~ ~ ~fd~ = ~ ~\~/Coll - = nA~. (13) 

expressing it in macroscopic flow quantities we have 

(14) 
(~ == ~J -'=2Y- ' m~2 n A ~  =(P-~c) ( -2q i /3  + EkPJk Uk)'  

where t% denotes the classical coefficients of viscosity based on a local 
full-range maxwellian. 

While calculating o~(y) one also finds the expression for pyy which is 
not the case with the method of Shen. At this point we differ with the 
approach of Shen and in this respect it is evident that the present ap- 
proach is much more general than that of Shen. Further his results come 
out as a special ease of ours. 

The transfer equations for m~y and m~y turn out to be respectively as 

+ a~ u ~2 -Dyy 
(I-G3,-) - - -  (G2,+ + G2,-), 

2V~h 3/2 (1-G3,+) - 2~{_~h3/2 C 4h 

(I-G4.+) + 3 (I-G4.-) = -- 
8h 2 - ~  

(15) 

RT u 
pyy(y+C2) + (G3,- - G3,+) 

2 ~r ' 

(16) 

Once the transfer equations are derived, the rest of the analysis becomes 
quite simple. At this stage it is apt to remark that more general the dis- 
tribution functions, the more labour it involves. Carrying out the similar 
analysis as above one can find the values for Pvv and C 2. One can calculate 
the other coefficier~ts by choosing the suitable t9~nsfer equations. The method 
seems to become more and more tedious as one goes to the higher order 
moments. 
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4. Conclusion. 

The main aim of the present paper is to give a more general formu- 
lation for velocity distribution function and in consequence the advantages 
of the present method are discussed in detail in eomparison with other 
methods, particularly that of Shen. The method is then applied to the pro- 
blem of plane linearized couette flow and the method of analysis is out- 
lined. Moreover, the method seems to be suitable for non-linear cases. 
Further work on the applicability of the present method is in progress 
and it will be published soon. 
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